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The Cagniard method for obtaining the inverse Laplace transform of integrals, used when 
solving wave-propagation problems by generalized rays, was meant originally for simple 
cases of point-sources with a step-function time-dependence and simple structures. Gradually, 
the method was extended to more complex sources and structures but in many cases the 
solution involved expressions requiring convolutions. The extension presented here enables 
one to obtain the time-dependent solution for various complex cases in a form similar to 
that for simple cases, i.e., in terms of simple integrals, without convolutions. Several examples 
are given: a strike-slip point-source with linear time-dependence, a dip-slip point-source 
with linear time-dependence, and a strike-slip point-source with quadratic time-dependence. 

1. INTR~OUCT~~N 

In problems of elastic wave-propagation from point-sources and also from sources 
of finite extent, an essential role is played by the inversion of Laplace transforms 
representing generalized rays, of the form 

(1.1) 

Here 

I=1 for m = even, 
(1 .a 

zz 0 for m = odd, 

g(X) = i Wj(X’ + hi”)li2, O<Oj<l, O<X,,<l, (1.3) 
j=l 

h and r are constants, the first usually representing the overall depth of the layer in a 
layered structure while the second represents the horizontal distance between source 
and receiver. Jg’ is the s-order derivative of the mth order Bessel function, n is an 
integer, and 

k = PIG 
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p being the transform variable and c a characteristic wave velocity. The function 
cp(x) is a rational function of x2 and the square roots (x2 + hj2)1/2 and possibly some 
additional square roots of the same form (x2 + &2)1/2, k = 1, K. 

The transform is taken here as 

f(p) = p s,= @“f(t) dt. (1.5) 

Studying the propagation of elastic waves in a medium consisting of two half- 
spaces, Cagniard [7] was the first to show how to use techniques from the theory of 
analytic functions in order to bring (1.1) in the particular case m = 0, n = 1, N = 2, 
s = 0, to a form on which it is easy to recognize the transform of a known function. 
For the particular cases m = 0, n = I, N = 1, s = O,l, similar techniques were used 
by Pekeris for an 5%torque pulse in [18] and for a vertical force in a half-space in 
[19, 20, 211. A different approach for obtaining the inverse of (1.1) for an impulsive 
line-force in an elastic half-space was presented by Sherwood [23] whereas a modifica- 
tion of Cagniard’s method was given by de Hoop [ 10, 1 l] and used by Helmberger [93 
for a more general case (N > 2) corresponding to rays undergoing multiple reflections 
or refractions. Cagniard’s original method was combined by Longman [14] with the 
Pekeris version and used for the propagation of an %&pulse in a layered solid by 
Pekeris, Alterman, and Abramovici [22] and for a P-pulse in a layered solid by 
Pekeris, Alterman, Abramovici, and Jarosh [23], Abramovici and Alterman [2], 
and by Abramovici [l]. For a vertical force in a layered solid this method was used by 
Abramovici and Gal-Ezer [3]. In these papers the inversion of (1.1) was obtained for 
N = 2, it = 1 but also for II = 0 corresponding to a source having a linear time- 
dependence, whereas in all the previous work only the case n = 1 was treated, i.e., 
that corresponding to a source with a Heaviside step-function time-dependence. The 
inversion of integrals of the form (1.1) for n = 1 for explosive sources, vertical forces, 
and double couples were obtained also by G. Miiller in [15, 16, 171 for multilayered 
structures. For an impulsive double couple the inversion of (1.1) for a general N 
was given also by Chandra in [8]. Using Helmberger’s approach, Ben-Menahem and 
Vered [6] extended Cagniard’s method to general multipolar sources obtaining 
therefore the inversion of (1.1) for a general N and m. 

In the present paper we make use of Cagniard’s original approach in Longman’s 
version to show how to obtain the inverse transform of the integral (1.1) for any 
integer n. We present first the case n = 1 for a multipolar source in a layered medium 
and then show how to use the obtained formulas for the case IZ = 0 and recursively 
for any negative n. The cases 12 < 0 are needed for linear or quadratic sources, for 
avoiding the use of convolutions in calculating some of the displacement components 
for certain types of point-sources [25] and for calculating the displacement for finite 
sources [12, 13, 41. 
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2. THE INVERSE TRANSFORM FOR n = 1 

Following Cagniard’s procedure closely, use an integral representation for J,(z) [5] 

leading to 

.I&) = (- l)m/g $ WC jn” e-i”COse cos m6’ d0 for m = even 
0 

= (- l)(m+l)/z _1 ym 
s 

7712 
e-izcose cos id d0 for m = odd. 

rr 0 

Differentiating s times we get 

(2.1) 

(2.2) 

Thus, leaving aside a multiplicative constant and postponing taking the real or the 
imaginary part, we want to find the inverse transform of 

T(p) = k jy2 (- i cos 0)* cos me dtl 
I 
om f(x) e-kh[.dZ)+bZ Co8 6-l dx, 

(2.4) 

where 

p = r/h (2.5) 
and 

f(x) = XZf%p(X) (2.6) 

J?‘(z) = (-l)“/” $ We 1;’ (-i cos 0)” e-izCO*e cos m0 d6 for m = even 

= (-1) (m+l)p _ 3% f, jv’2 
(2.3) 

(-i cos tQs e-izcoSe cos mb’ dl-l for m = odd. 
0 

Stage 1. Change of Variable 

Following Cagniard, the idea is to find a change of variable that will bring (2.4) to a 
form on which the transform of a known function is easily recognizable. A natural 
candidate would be the exponent in (2.4) 

y = g(x) + ipx cos 8. (2.7) 

The following result shows that y = y(x) may indeed be taken as a change of variable. 

THEOREM 2.1. The application y = y(x) is one-to-one for Re(x) > 0 and Re(y) > 
g(O) 8 
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(a) the x-plane is cut along the imaginary axis between --A& and A&, 

(b) 2 the square roots (x2 + hi ) II2 are defined as having a positive real part for 
Re(x) > 0, 

(c) the y-plane is cut along the real axis between E and h4 (Fig. 1) corresponding 
to y(ih) and y(iv,), where 

h = min (AJ (2.8) 

and v,, > 0 is the smallest real zero of the derivative of the function 

i/~(v) = y(iv) = iI mi(hj2 - v2)l/’ - pV COS 0. (2.9) 

Proof. Use the argument principle for a contour in the x-plane formed by a semi- 
circle in the first quadrant having the origin as center and of sufficiently large radius, 
and the corresponding portion of the imaginary axis (Fig. 2). 

Performing the change of variable in the internal integral (2.5) we get 

T(p) = k l=‘2 (- i cos 19)~ cos m0 d0 rf[x(y, e)] e 
s 

-khw ax(Y> @ dy (2 10) 

ay 3 - 

where x = x( y, 0) is the inverse of (2.7) and the contour I’ (Fig. 2) is a path in the 

(Y) 

A 

/ 
/’ / 

/ 
/’ 

w 
E F M 

FIG. 1. The complex plane for the variable y  = g(x) f  ipx cos 8. 
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FIG. 2. The complex plane for the original variable n. 

first quadrant starting at F corresponding to J = y(0) and going to infinity asymptoti- 
cally approaching the line 

y = t hj + ip cos 6 
( 

9&(x). 
i=1 1 

(2.11) 

Stage 2. Change of Integration Path 

If f(x) does not have singular points in the domain included between r and the real 
axis, which is the case when (1.1) represents generalized rays in layered media, one 
can use Caucy’s theorem and replace F by the real axis from F to infinity 

T(p) = k JO=” (- i cos QS cos m6J de Jm f[x(y, d)] e-lchv axyi ‘) dy. (2.12) 
9 
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As the y-plane was cut between E and M, along the portion FM we have to choose 
the smallest root of the equation 

i.e., y satisfies 

*w = Y, (2.13) 

Y -=c Y < $4d. (2.14) 

Stage 3. Direct Inverse 

The inverse transform of T(p) is obtained easily by changing the order of integra- 
tion in (2.12) and at the same time changing the variable in the external integral to 

t = by/c. (2.15) 

Indeed 

T(p) = : lyrn edkhy dy I” f [x( y, e)] “$ ‘) (-i cos t?)s cos me d0 

=gJome-*tq~ - $j dt I”+ ($ ej] [ a,($@] 

x (-i cos e)s cos me de, y2!, (2.16) 

where H(U) is the Heaviside unit function. Thus, the inverse of T(p) is 

T(t) = R H(T - 3) Bi2f[x(7, e)] [ ax$ ‘)],=, (-i cos ey cos me de, (2.17) 

where 7 is a nondimensional time-parameter 

and 

T = et/h 

N 
5= = y(0) = 2 WJj 

j=o 

(2.18) 

(2.19) 

Stage 4. Change Integration Variable from 8 to x 

Still in Cagniard’s footsteps, we can simplify (2.17) by taking x as integration 
variable instead of 8, using (2.7) for y = T, 

T(t) = ; H(T - T) jzyf(x) [-$ $],_, [--i cos 0(x, T)ls dx, (2.20) 
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where x’ and X” correspond to 0 = 0 and 0 = ~r/2, respectively. It turns out that x’ is 
situated either on the negative imaginary axis or in the fourth quadrant, whereas x” is 
on the positive real axis so that the integration path from x’ to x” belongs entirely to 
the fourth quadrant. Using (2.7) we get 

[““I 1 
ay 2x Y=T = i[K(x, T)p2 ; 

i cos e = 5(x,, 
P-T 

where 

zqx, T) = {2(x, T) + p2x2; 5(x, d = 7 - g(x). (2.22) 

The square root in (2.21) is defined so that it is real and positive when x is real and 
positive, uniformity being achieved by a cut in the x-plane along the segment of 
straight line from x’ to -x’. 

Using the expression of cos me as a Chebyshev polynomial (Abramowitz and 
Stegun [5]) combined with (2.7) we get 

cos me = T,(Qipx) (2.23) 

and (2.20) becomes 

(2.24) 

We may write (2.24) in the form 

T(t) = Complex conjugate of - h [ i 1%: GE (i$)(- $)” &zT$2 ), (2.25) 

where x1 , the complex conjugate of x’, is situated in the first quadrant and satisfies 
the equation 

g(x) - ipx = T. (2.26) 

Expression (2.25) is obtained by using the following result: 

LEMMA. Given a complex integral along a path r 

Z = 
s 

F(z) dz, 
r 

(2.27) 

its complex conjugate is given by 

I = r F(z) dz 
s 

(2.28) 
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if F(z) satisfies the condition, 

F(z) = F(Z). (2.29) 

Now restoring the constant and taking the real or imaginary parts as shown in (2.4) 
we get the inverse in the form 

where 

u(m) = (- l)m/2 

= (- 1)(m+l)/Z 

for m = even 

for m = odd. 
(2.31) 

Following Longman [14], we write (2.30) in a form which is more convenient for 
numerical calculations and also for further analytic developments as well as for 
ph$ical interpretation. The main role is played by Eq. (2.26) for x; . If 

7 < To = J&o,, (2.32) 

the equation for x1 has two purely imaginary roots and we have to choose that having 
the least absolute value. Denoting this root by xi = iv 1 , v1 satisfies the real equation 

!l Wj(hj2 - v1y2 + pv1 = 7. (2.33) 

Taking into account the assumptions on #(x), we find that for j -C 7 < 7. we get 
from (2.30) 

where 

X = min (A, X, ,..., A,). (2.35) 

It may happen however that v1 < A. In this case there is no contribution for 
T < 7. . This is certainly the case if u,, < 1, i.e., when p < p1 , p1 being defined as 
follows: 

N 
x 

Pl = jg (A,2 “‘~2)1/2 * 

In such a case ~~“(cJJ, t) = 0 for T < TV. For 7 > To , T$“(v, t) is given by (2.30) 
where x” can be replaced by ix since there is no contribution to the integral from the 
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portion of the real axis between the origin and x” and from the portion of the 
imaginary axis between the origin and ix, as the integrand is real. 

When p > p1 there are two cases: either v1 < x and in this case the result is zero 
for T < TV. This condition may be translated into a condition on T, by using the 
function #(v): T < T*, where 

T* = #(A) = g(x) + PA. (2.37) 

Thus, when T* < 7 < To, Fk”(v, r) is given by (2.34) whereas when 7 > To ,~~“(~,, t) 
is again given by (2.30). 

Summarizing, the inverse of (1 .l) for n = 1, s = 0 is obtained as follows: 
For x > h or x < X and p < pl, 

sy(ql, t) = 0 T < To 

(2.38) 

For x < A and p > p1 , 

= Y;“(T) 7 > T,, . 

Fjy(rp, t) = 0 7 < T* 

= x;‘(T) T* < 7 < To (2.39) 

= Y;‘(T) 7 > To, 

where Xi”(T) and Y:‘(T) are the right-hand sides of (2.34) and (2.30), respectively, 

x;“(T) = - 
I ‘I 2,’ ~mja,(iv)] /$‘(iv, T) dv, (2.40) 
x 

Y;“(T) = c&X [*I il-zxzcr,(x) /$‘(x, T) dx, 

where 

/%“(x, y) = T, (+) [ - -@$I [K(x, y)]-‘1”. 

There is a direct physical interpretation for relations (2.38)-(2.39), connected with 
the fact that the constants Xi and A, are ratios between a characteristic wave-velocity 
and various wave-velocities in the structure. The quantity p1 is the least horizontal 
distance at which total reflection can take place. If the horizontal distance is less than 
p1 no totally reflected wave is possible so that only a reflected wave arrives, the arrival 
time being 7. . However, if the horizontal distance is larger than p1 a wave arrives 
before To : This wave may be interpreted as being reflected at the critical angle, 
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traveling on a separating interface at a layer velocity corresponding to the lower 
medium and then returning to the receiver directly or after a number of reflection. 
The geometric minimum arrival time of such a ray is T*. Such a wave is possible only 
if in the lower medium there is a wave-velocity higher than the velocities in the higher 
medium and this is the meaning of the condition 1 < h. 

3. THE INVERSE TRANSFORM FOR n = 0 

As 

it follows that the inverse transform of 92” is obtained from 52 by integrating with 
respect to t, 

(3.2) 

We need therefore the following integrals: 

I$‘(T) = h jT Y;“(y) dy, (3.3) 
TO 

and 

X$“(T~) + P;“(T) = h j-1 X;“(y) dy j- h 1’ Y;‘(y) dy. 
70 

First calculate EGG: 

(3.4) 

&+-) = A + B = --h j-1 dy 9~ 6’” ulam(iu) /?$“(iu, y) du 

+ h L: dy L&Z i;‘“’ i’-%,(x) /3;;“(x, y) dx. (3.5) 
0 

If p < p1 , the integrand of A is real so that there is no contribution from this term. 
When p > p1 , the first term may be calculated by interchanging the order of integra- 
tion 

A = - Ae h I,‘” dol,(iu) du [, ,kl;“(iu, y) dy. 

Denote by pks an indefinite integral of ,8~“(x, y) with respect to y, 

(3.6) 

fg (x, y) = /3;yx, y). (3.7) 
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Then 

A = - A/r h h’” u2am(ic~)[~~8(ic~, T) - ~~~‘+I~, TJ dc. (3.8) 

Now calculate B. When y varies from T,, to T, the point xl(y) describes a curve in 
the first quadrant of the x-plane, 

x = x(u). (3.9) 

Here x is the solution of Eq. (2.26) with T replaced by u in the right-hand side, 

g(x) - ipx = (5, (3.10) 

u varying between TV and y. Using D as an integration variable, which is possible as 
(3.10) is one-to-one, we get 

and interchanging the order of integration, 

B = =A& h jr il-‘x’(u) cu,[x(n)] g do j-’ /3;“[x(u), y] dy 
TO 0 

(3.12) 

=&hI’r +zx2(u) 
TU 

am[x(u)](~;s[x(u), T] - fi$s[x(u), u]} $ da. 

Going back to x as integration variable, we get 

s 

q(T) 
B = Y& h il-zxzam(x){~l~s(x, T) - j?;‘[x, g(x) - ipx]} dx. (3.13) 

iv, 

Returning to (3.5) and using (3.8) and (3.13) 

c’(T) = he h j==yiT) il-zXza,(X) ,&‘(x, T)  dx + &t 6’” U’a(iU) /?;‘(iU, To) 

I 

- 9ec h I”(‘) il-zxza,(x) j?;‘[x, g(x) - ipx] dx. (3.14) 
iDo 

Now calculate p;‘(T), 

s s 

zip 

x$“(T) = -h 7 & d YA+q,&o)] /3;‘(iu, y) de. (3.15) 
7* x 
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As u1 , being the smallest root of $‘(v), is less than a,, and increases with T for T < T,, , 
we can reverse the order of integration in (3.15), using (2.33) with T replaced by y, 

i.e., 

x:;“(T) = -h s, 
Zjl(T) 

d ~~v[cx~(iv)]{~~~‘(iv, T) - b;‘s[iv, g(ic,) +- pv,]} dtl. (3.17) 

Finally, calculate (3.4) using (3.14) and (3.17) 

x$‘(To) + p&“(T) = ch’2 h s 

X,(T) 
i’-zx”~,(x){~~s(x, T) - ,6$‘[x, g(x) - ipx]} dx. 

li (3.18) 

Thus, the inverse transform Fz”(p, t) is given by formulas similar to (2.38)-(2.39), 
the functions X2’(7), Ye’ being replaced by 

e’(T) = ha h l; il-‘Xzo(,(X) /$‘(X, T) dx, (3.20) 

where 

hwx, Y> = /Y(x, Y) - /Pb, ‘dx) - ipxl. (3.21) 

4. THE INVERSE TRANSFORM FOR n t0 

The procedure for obtaining the inverse transform for n = 0 can be repeated 
several times. Therefore, the inverse for any n < 0 is obtained inductively in the form 
(2.38)-(2.39) with X$'(T), YL8(7) replaced by 

where 

/yzyT) = --)fn+1 jW’ Vz J%+,(iC)] ~~s(iv, T)  do, 
1 

c’(T) = c&t ,I-“+l j” i’-zXza,(X) ,~Z’(X, 7) dx, 
li 

/3z”(X, y) = /TE+lss(x, y) - flE+l*‘[x, g(x) - ipx]. 

(4.1) 

(4.2) 

(4.3) 

Thus, in order to write the inverse transform for a negative value of n, all one needs is 
to calculate several indefinite integrals, the inverse being expressed again by single 
integrals. I’n what follows we consider several illustrative examples [4]. 
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EXAMPLE 4. I. Strike-slip point source with linear time-dependence. (a) The vertical 
displacement is a sum of generalized rays of the form Fi’O(y, p), i.e., corresponding to 
m =2,n = 1,s =O,sothat 

T,(cos e) = 2 COG e - 1 (4.4) 

and therefore 

leading to 

T 
( 1 
i5 = _ 37 - &)I2 + p2x2 

2 PX p2x2 

x;*“(T) = 6 J;” ~~[dWl 
2[~ - g(iu)12 - p2a2 du 

u[K(iu, 7)]1/2 ’ 

(4.5) 

(4.6) 

(4.7) 

(b) The radial displacement containes generalized rays of the form Pi*l(rp, p). 
Thus, in this case m = 2, n = 1, s = 1. X.$1(~) and Y$‘(T) coincide with X,‘*” and 
Y$‘, respectively, except for the factor -[T - g(x, 7)1/p. 

(c) The azimuthal displacement component contains generalized rays of the 
form 9i’*(v,p), i.e., m = 2, n = 0, s = 0. As 

Bz’so(x, Y) = - 2b - &WI2 + p2x2 
P2X2([Y - g(4]2 + p2xy2 (4.8) 

we have, according to (2.43) and (4.3) 

Pk02”o(x, Y) = - y ;2x”2’x) ([ y - g(x)]2 + pYy = /qyx, Y) (4.9) 

and therefore 

x;“(T) = -$ f ” T -lf(iu’ ch~[&‘)][~(iv, T) du]‘/2, 
x 

f?*“(T) = f 3% j-, xl T -xg(x) q$X)[K(x, T) dx]li”. 

(4.10) 

(4.11) 

EXAMPLE 4.2. Dip-slip point-source with linear time-dependence. The displacement 
components contain generalized rays of the form St>’ for three different cases: 

(a) m = 1, n = 1, s = 0. 
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We have 

(4.12) 

and 

44 = - f dx), p:‘O(x, y) = 5 [Iqx, y)]-‘1” (4.13) 

leading to 

X;*“(T) = --?-- (’ 9&z[cp(iv)] T - g(iv) dq 
vh ,I v[K(iv, T)]l/2 

Y;,‘(T) = + J&t 1” c+(x) T - g(x) dx. 
ih x[K(x, 7)]1/2 

(4.14) 

(4.15) 

(b) m = 1, n = I, s = 1. 

X,‘*’ and Y:?’ are identical with (4.14)-(4.15), respectively, except for the factor 
[T - &G d/P. 

(c) n=l,n=O,s=O. 

From (4.13) we get immediately 

kT”<x, Y> = + K(x, Jv2 = /$“(x, y) (4.16) 

so that 

x,“‘“(T) = $ I’ chZ[&V)][~(iV, T)]l/” $ , (4.17) 

e’“(T) = & ~62 1” &t)[&, T)]1’2 $. 
i,i 

(4.18) 

EXAMPLE 4.3. Strike-slip point-source with quadratic time-dependence. (a) The 
vertical displacement corresponds now to the values m = 2, n = 0, s = 0, i.e., are 
given by (4. IO)-(4.11). 

(b) The radial displacement corresponds to m = 2, n = 0, s = 1. We have 

B%, VI = mJ - &)I2 + P2X2HY - &, v)l 
p3x2([y - g(x)12 + pzxzyz 

so that 

(4.19) 

{2[y - &)I2 - p2xx”)([y - &# + P~x’)~‘” = @*‘(x, y), (4.20) 

s8Ilw/3-3 
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i.e. 

J%N[g;(iU)]{2[T - g(h)] + p”v”}([7 - g(iu)]2 - pwy: $ ) 

(4.21) 

g;ww - &)I - p”x”)(b - &>1’ + p2x2y $ 
(4.22) 

(c) The azimuthal displacement corresponds to m = 2, n = - 1, s = 0. Using 
(4.9) we get 

pz”so(x, Y> = - (4.23) 

so that 

” &a cp(iv) {tT _ g(iu)]2 _ p2u2}3/2 dv, 
V 

(4.24) 

{[T - g(x)12 + p2x2}3/2 dx. (4.25) 

5. THE INVERSE TRANSFORM FOR IZ > 1 

In many applications the inverse transform of expressions involving ~~‘(~, p) is 
required for n = 2, e.g., in cases when the displacement for Heaviside point-sources is 
needed. When velocities or accelerations are needed for linear or Heaviside sources, 
we have to calculate st:‘(v, p) with n > 2. 

Forn=2 

so that the inverse Transform of Sz”(q,,p) is obtained by differentiating with respect 
to 7, 

1 d 

i.e., S~“(F, t) is given by (2.38)-(2.39) with XkS and Yk8(7) replaced by their deriva- 
tives with respect to T divided by h. These derivatives can be obtained analytically 
from (2.40)-(2.41) through the following changes of variables, used by Longman [ 141 
to remove the singularity in the integrands for numerical purposes. 

Y = u,(l - u”) (5.3) 
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for (2.40) and 

x = x,(1 - US) (5.4) 

for (2.41). Making these changes of variables after extending the integration to the 
origin, we get integrals with fixed end-points, so that we can differentiate under the 
integral sign. 
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